
J .  Fluid Me&. (1976), voE. 78 ,  part 3,  p p .  445-457 

Printed in Great Britain 
445 

The second approximation to mass transport in 
cnoidal waves 
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A second approximation is developed for the mass-transport velocity within the 
bottom boundary layer of cnoidal waves progressing over a smooth horizontal 
bed. Mass-transport profiles through the boundary layer are obtained by consider- 
ing terms of up to third order in the perturbation parameter. A comparison with 
results based on a first approximation indicates that the effect of the third-order 
terms is to predict a smaller mass-transport velocity and that this difference is 
generally significant, particularly for waves extending to the intermediate depth 
range. The predicted correction to the first approximation is qualitatively sup- 
ported by experimental evidence. 

1. Introduction 
The mass transport, or particle drift velocity, in cnoidal waves propagating 

over a smooth horizontal bed was first calculated for an inviscid fluid by Le 
M6hautB (1968) on the basis of Laitone’s (1960) cnoidal wave theory. More 
reoently, Isaacson (1976) has derived an alternative expression for this case and 
has also investigated the effect of fluid viscosity on the mass-transport velocity 
within the laminar boundary layer at the bed. 

The above studies were both carried out to a first approximation by consider- 
ing terms of up to second order in the perturbation parameter. When higher-order 
terms are included, the net drift of any particle over a wave period depends not 
only on the initial location of the particle, but also on the initial instant within the 
wave cycle. However, by defining the average mass transport as the average of 
such drifts for all instants throughout the cycle, the mass-transport velocity may 
be obtained to a higher degree of approximation. In  this manner, Sleath (1972) 
has derived a second approximation to the mass transport within the bottom 
boundary layer of Stokes waves. 

In the present paper, the previous study (Isaacson 1976) is extended to the 
determination of a second approximation to the mass transport within the 
bottom boundary layer for the case of cnoidal waves. The results indicate a 
smaller mass-transport velocity than the prediction based on a first approxima- 
tion and that this difference is generally appreciable, particularly for waves 
extending to the intermediate depth range. Available measurements of the mass- 
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transport velocity near the bed correspond more closely to the predictions of the 
second approximation than to those of the first. 

2. Theoretical development 
It is assumed that the waves are steady and two-dimensional and that they 

propagate over a smooth horizontal bed. The water is assumed incompressible. 
Apart from the steady component of velocity, the motion outside the boundary 
layer is taken from Laitone's (1960) cnoidal wave theory applied at the bed. The 
notation previously used by the present author (1976) is adopted here and as 
before it is convenient to work with variables which are dimensionless in the 
extended set of dimensions M X  YT and defined as 

(2.1) I t = kx, 7 = y/S, U' = kufw, V' = v/wS, 
U' = kU/w,  7 = wt. 

Since the boundary-layer thickness is very much smaller than the typical 
lengths of the wave motion, the Prandtl boundary-layer equations are applicable 
to the motion within the boundary layer. These may be written in the non- 
dimensional form 

aui , aui aui aut aul i a2ui -+u -++I- = - + U'-+-- 
a7 a< a7 a7 a t  z 872) 

aullac + avt/a7 = 0, 
(2.2) / 

subject to the boundary conditions u' = 0 and v' = 0 at 7 = 0 and u' = U' as 
7 3 00. It was pointed out by Isaacson (1976) that the neglect of the term V(aU/ay) 
in the boundary-layer equations is essentially a boundary-layer approximation 
and does not depend on the perturbation procedure to be introduced. We now 
assume that u', v' and U' may all be expanded as asymptotic power series in a 
perturbation parameter E in 

Substituting (2.3) into (2.2) 
first order 

with 
u; 
4 

To second order 

- au; i a2u; 
a7 z a72 

with 

the form 
m 

f = Z cnfn. 
n = l  

(2.3) 

and collecting successive powers of B ,  we obtain to 

I = 0, v; = 0 a t  7 = 0, 
= U ;  as q+m. 
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At third order we shall require only the terms independent of time. Using an 
overbar to denote a temporal mean over the interval to to to + T , where T is the 
wave period, the time-averaged third-order terms give for 

with 

The terms au$b and aU;/ar have been omitted from (2.8) since the motion is 
assumed periodic in time and therefore 

au;/ar = [u;]2+2"= 0 

au;/ar = 0. 
(where ro = wt,). Similarly 

(2.10) 

(2.11) 

Moreover, boundary conditions which specify that au;/ar] and aular] are zero as 
r]-+co have been introduced in (2.7) and (2.9) respectively. These additional 
conditions are necessary to obtain complete solutions for u; and% and corres- 
pond physically to there being no source of rapid variation of the steady velocity 
with y outside the boundary layer (Batchelor 1967, p. 360). Also au;/ar] itself 
tends to zero as r] -t co since the fluctuating component of au;/ar] ( r ]  3 co) is given 
by the value of aUJay at the bed in a wholly irrotational motion and is zero. 

In  order to solve (2.4), (2.6) and (2.8), we shall require the description of U, and 
U2 given by cnoidal theory. It is convenient to choose the perturbation para- 
meter E to be equal to  the ratio Hlh, where Hi s  the wave height and h the trough 
depth, since the results of cnoidal theory may then be applied directly. Thus, with 
sign changes accounting for the reversal in the direction defining x, we have from 
Le MBhaut6 (1968) 

U, = (gh)* ( cn2(q)- - if2)) 3 (2.12) 

Kf2 7K2 - 2 u2 = -(gh)* ( 6 ~ ~  - ( 3 ~ ~ + 2 ) + ( 7 )  cn2(q) 

-9  cn4 (a) - JL (K2+  4) +s 3 [ ($2- 11 
1 2 ~ 4  

x [ K ' 2 + 2 ( 2 ~ ~ - 1 ) c n ~ ( q ) - 3 ~ ~ c n ~ ( q ) ]  . (2.13) 1 
Here cn is the Jacobian elliptic function, with argument q = K ( K )  (Icx-wt)/n 
and modulus K,  y is the ratio of the complete elliptic integrals E(K)/K(K) and 
d2 = 1 - ~ 2 .  In  fact (2.13) derives from the assumption that the mean Eulerian 
velocity is zero for the irrotational motion, and putting y = 0 we obtain the 
fluctuating component of U2 at the boundary-layer edge. 
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It is convenient to represent U;  and U; at the boundary-layer edge as complex 

U i  = I: Aneine, A_, = AZ, A, = 0, (2.14) 

Fourier series : 
m 

n=-m 

(2.15) 

where an asterisk denotes the complex conjugate and 

(2.16) 
We now define 

A; = (c/(gh)') An, B; = (c/(gh)') Bn. (2.17) 

where c is the wave speed ( = w / k ) .  Then A; and Bh depend only on the modulus K 

and may be determined numerically for all n by expressing the Jacobian elliptic 
functions occurring in (2.12) and (2.13) as Fourier series. This was carried out by 
Isaacson (1976) for A; and we shall here derive a corresponding expression for 
B;. In  order to do so the following identities are introduced. If F and G are any 
two periodic functions 

F = I: fneine, G = gneine (2.18) 

e = c - - ~  = Icx-wt. 

m m 

n=-m ?&=-a 

with no restriction on fn  and g,, then 
m 

FG = 5 ( 2 .fmg.-m) cine, li'c = I: jng-n .  (2.19) 
n=-m m=- a n=-a 

We shall also require a further identity eventually: -- 
m 

(2.20) 
ac aF 

F - + G -  = 2 -inf,g-,+ C -inf-ngn = 0. 
a6 a t  n=-a n=-a 

Returning now to the evaluation of B;, we put y = 0 in (2.13) as mentioned 
previously and obtain 

Now from (2.12), (2.14) and (2.17), cn2(q) is given in terms of A; as 

(2.22) 

Squaring (2.22) and using the result (2.19) gives 

Substituting (2.22) and (2.23) into (2.21) and since A:, =A;, we obtain after 
some rearrangement 

n-1 m 

B; = - ( - & 3 y + 3 r a - 4 ) A ~ +  1 C ALA;-,+2 2 ALALi-},\ 
m=1 m = l  (2.24) 

B i n  = B;, BA = 0. J 
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Hence both A; and Bk may be determined numerically for any given value of the 
modulus K. 

We have yet to consider the definition of the mass-transport velocity U,. It is 
assumed that UaI may be expressed in the form (2 .3 )  and that there is no first- 
order steady motion, i.e. U,, = 0. The first approximation to the mass-transport 
velocity, UM2, was obtained for the present case by Isaacson (1976):  

m - UM2 = Ak2 ( 5  + 3 exp ( - 2 d y )  - 8 exp ( - n i y )  cos ( n t y ) ) .  (2 .25)  
gh/c n=l 

To third order, the net drift of any fluid particle over a wave period depends on 
the initial instant to considered. A general expression for this third-order drift 
velocity Um3(to) was given by Sleath (1972) and essentially derives from a Taylor- 
series expansion of the velocity of a particle, together with the power-series 
assumption (2 .3 ) .  It applies to the present case also and, in terms of the dimen- 
sionless variables used here, reduces to 

(2 .26)  

All the above integrals are taken between the limits T~ and T .  We shall in fact 
require the average third-order mass-transport velocity, which is defined as 

(2 .27)  

For cnoidal wave motion it is convenient to non-dimensionalize velocities with 
respect to (gh)k and to express the mass transport in terms of e and K only. To the 
present order of approximation, we then write 

(2 .28)  

Now cnoidal theory gives the wave speed c as (gh)i ( 1  + O[e] )  and consequently the 
factor c/(gh)* in the first approximation (2 .25)  will introduce terms of order e3 
and higher. Thus we omit the factor c/(gh)) from (2 .25)  and write for the first 
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03 

- u&-2 = C AA2{5+3exp(-2nt7) -8exp(-nb~)cos(ni7)}; (2.29) 
(gh)' n = l  

the resulting term in e3 will be considered later. 
We now proceed to derive solutions to (2.4), (2.6) and (2.8), intending even- 

tually to substitute these into (2.26) and (2.27) and obtain an expression for UM3. 
The solution to (2.4) subject to the boundary conditions (2.5) was given by 
Isaacson ( 1976) : 

u; = 2 An {I - exp ( -any)] cine, (2.30) 
03 

n = - w  

(2.31) 

where a, = (1-i)nt. (2.32) 

We now consider the solution to (2.6) and substitute the expressions for U;, 
U;, u; andv;, given by (2.14), (2.15), (2.30) and (2.31) respectively, into theright- 
hand side of (2.6) and use the identity (2.19) to obtain 

(2.35) 
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n-m 
g 4  = -an-, V6 = fl3 -(y) , (2.39), (2.40) 

(2.41) 

It may be noted that, as expected, those terms in (2.34) corresponding to n = 0 
reduce to the solution for %given by Isaacson (1976). 

We are now in a position to derive the solution to (2.8) for 3. Initially the 
identity (2.20) is applied to ui, u; and U;, UL in turn: 

c1 u 2  ; u3 +7+4 fl4 0- 

u6 = a,+an-m ( a m  +an-) an-m an  

(2.42) 

and 

Thus the equation describing 3 reduces to 

(2.44) 

Substituting the expressions obtained for ul, vi, u; and v;, (2.44) is transformed 
to a lengthy equation of the form 

(2.45) 

where A, and Al  are known and generally complex functions of m and n or of n 
alone. Integrating twice with respect to 7 and applying the boundary conditions 
(2.9) gives 

(2.46) 

in which the subscript 1 has been omitted for clarity, 
By similar reasoning to that given previously, since c is (gh)*( l+O[s])  the 

factor c/(gh)* multiplying various terms in the above equation will introduce 
terms of order s4 and higher. Thus the replacement of An, Bn and u; by A;, B; 

29-2 
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and u$(gh)* respectively only gives rise to additional terms of higher order in 8 
and therefore does not affect the present approximation. The equation will then 
describe the profile Z3/(gh)* (q), which depends on the coefficients A; and BA and 
thus only on the modulus K. Now although (2.46) may be simplified further to 
reduce the number of terms, it is convenient to compute the profile G,/(gh)t (7) for 
any given value of K using the equation in its present form, but taking twice the 
real part of the overall summation for positive values of n only. 

To determine the third-order mass-transport velocity U,,, we also need to 
calculate the remaining terms in (2.26), which involve ui, v;, u; and v;1, and then 
use (2.27). This should be straightforward since expressions for all these velocities 
have been obtained and after some calculation the average of these terms with 
respect to to eventually gives 

where 

Again, if A ,  and B, are replaced by Ah and BA, the right side of (2.47) may be 
evaluated for any given K .  The sum of (2.46) and (2.47) then gives UM3/(gh)* (7) as 
a function of K only. However, when the factor c/(gA)t was applied to the first 
approximation (2.25) to obtain the form (2.29), it was mentioned that an addi- 
tional term in e3 arises. Now from Laitone (1960), the wave speed is given by 

C/(gh)* = 1 + €( 1 - 2’7) /2K2 + 0 [ S 2 ] .  (2.49) 

The additional term in e3 resulting from the modification to the form of the first 
approximation is found by substituting (2.49) into (2.25): 

- =  v, 
(ShP ( - ’iK; ’) AA2 (5 + 3 exp ( - 2n)q) - 8 exp ( - ntq) cos (ntq)). (2.50) 

When this is added to the other components of the third-order mass transport 
already described, we may obtain U,,/(gh)&. The calculations have been carried 
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0 0.1 0.2. 0.3 0.4 

Una/E2(gh)* 
FIQURE 2. Mass-transport velocity distributions through the bottom boundary layer for 
K = 0.99 and various values of E:  (a) first approximation, UM = E ~ U M ~ ,  (b )  E = 0.1, 
( 0 )  E = 0.2, (d)  E = 0.3, (e) E = 0.4. 

FIQURE 1. Third-order mass-transport velocity distributions through the bottom boundary 
layer for various values of the modulus K :  (a) K = 0.999, (b )  K = 0.99, (0 )  K = 0.96, (d) K = 
0.90. 
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FIGURE 3. Second- and third-order components of the mass-transport velocity at the outer 
edge of the bottom boundary layer as functions of the modulus K.  

out on the University of Hawaii computer and some profiles of U,,/(gh)* (7) for 
various values of K approaching unity are presented in figure 1. 

3. Results and discussion 
The effect of taking the mass-transport calculation to a second approximation 

is considered here with particular reference to (2.28). The distributions of 
?77f2/(gh)i and U,le2(gh)t through the boundary layer for various values of E are 
shown in figure 2 for the particular case K = 0.99. It may be noted that. the smaller 
mass-transport velocity given by the second approximation persists throughout 
the boundary layer and thus any difference in the predicted mass-transport 
velocity at the boundary-layer edge is generally indicative of conditions within 
the boundary layer. 

The mass-transport velocity at the outer edge of the boundary layer is in any 
case of particular interest and of some practical importance. The first approxima- 
tion to this was derived by Isaacson (1976): 

The third-order component of the mass transport at the boundary-layer edge is 
found by letting 7 -+ co in all those terms comprising U&,/(gh)4. These include 
F/(gh)*, which is not zero for a viscous fluid, the Lagrangian terms given by 
(2.47) and finally the correction term arising from U,,/(gh)a. From (2.46), (2.47) 
and (2.50), U,,,/(gh)4 may be expressed in a slightly simpler form for 7 3 00 and 
may be evaluated numerically as a function of K .  The variation of U,,/(gh)) and 
U,,,/(gh)i at the outer edge of the boundary layer with K is presented in figure 3, 
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FIGURE 5. Ratio of the second to the first approximation of the mass-transport velocity at 
the outer edge of the bottom boundary layer as a function of the wave depth parameter kd 
for various values of E :  (a) E = 0.1, (b )  E = 0.2, (c )  E = 0.3, (d )  E = 0.4. 

FIQURE 1. Third-order mass-transport velocity distributions through the bottom boundary 
layer for various values of the modulus K :  (a) K = 0.999, (b )  K = 0.99, (0 )  K = 0.96, (d) K = 
0.90. 
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which may conveniently be used to evaluate the mass transport for any particular 
case. Thus, for given wave parameters, values of B and K may be obtained and then 
figure 3 and (2.28) readily permit an estimate of U,/(gh)t. 

The significance of the second approximation in determining the mass trans- 
port at the boundary-layer edge may be assessed from figure 4, which shows the 
dependence on the modulus K of U,,/(gh)l together with that of .?&/G(gh)4 for 
various values of E .  It is seen that the correction to the first approximation be- 
comes appreciable as K decreases from unity, this corresponding to waves extend- 
ing to the intermediate depth range. 

More precisely, cnoidal theory gives the wave depth parameter kd, where d is 
the mean depth, as 

A -  

kd = - n(3B)t (1 +z ( 8 y + ~ ~ - 6 )  + 0 [ c 2 ]  
~ K K ( K )  8~' 

Thus, from figure 4, we may obtain the fractional decrease from the first approxi- 
mation resulting from the third-order terms as a function of the wave depth 
parameter kd. Figure 5 thus presents U,/ezUM, as a function of kd for various 
values of E and shows clearly that the second approximation should generally be 
taken into account. Even for waves with E = 0.1, the third-order terms cause a 
reduction of more than 10 yo for waves of any depth, while for higher waves, say 
E > 0.2, the reduction is always more than 20 yo. For waves of intermediate depth 
(kd > 0.3) the reduction from the first approximation becomes more severe as kd 
increases. This is expected since it was mentioned by Isaacson (1976) that the 
first approximation tends to be an overestimate beyond the shallow-water 
range. 

On the other hand, for very small values of kd, the mass-transport velocity also 
becomes small. In  the limit K --f 1 (kd -+ 0 ) ,  corresponding to the solitary-wave 
case, the result of zero mass-transport velocity is inappropriate and it is then the 
total displacement of fluid, rather than the displacement averaged over the wave 
period, that is of interest. 

Brebner & Collins (196 1) have measured the bottom mass-transport velocity 
over a range of conditions and the original data have been supplied to the 
author. It is appropriate to contrast comparisons of these data with the 
predictions of the first and second approximations respectively, and so to 
consider only conditions reasonably near the shallow-water range. Those data 
corresponding to kd < 0.7 are analysed here. 

For each set of values of H ,  T and d, the corresponding values of B ,  K and 
(gh)t may be calculated numerically and thus the predicted values of the mass- 
transport velocity based on the first and second approximations, s2U,, and U, 
respectively, may be calculated. These are compared with the measured bottom 
velocity ub in figure 6, in which the ratios Ub/e2UM2 and ub/qw are plotted against 
the perturbation parameter E .  Despite the extent of the scatter, which must be 
expected in this kind of experiment, trends showing Ub/E2UM2 to decrease with e 
to values below unity and ub/qw to remain near unity and independent of 8 are 
clearly evident. This observation is expected from the theory [see (2.28)], which 
indicates that the deviation from the first approximation increases with E ,  and 
that the correction introduced by taking the calculation to a second approxima- 
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0 0.1 0.2 0.3 0.4 0.5 
E E 

FIarmE 6. A comparison of the measured bottom velocity ub with the predictions of (a)  the 
first approximation @UM, and (6) the second approximation UM. The ratios U a I ~ 2 U ~ 2  
and U b l U ~  are plotted against E and the figure is based on the data of Brebner & Collins 
(1961). 

tion serves to restore the ratio of measured to predicted velocity closer to unity a t  
greater values of E .  

Over the range of depths considered, then, i t  appears from the above compari- 
son that the second approximation may reasonably be used for waves of general 
height, whereas the first approximation is realistic only for waves with, say, 
E Q 0.1. 
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National Research Council for its support. 
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